Trafficking of AMPA receptors at plasma membranes of hippocampal neurons.
نویسندگان
چکیده
The number of AMPA receptors at synapses depends on receptor cycling. Because receptors diffuse rapidly in plasma membranes, their exocytosis and endocytosis need not occur near synapses. Here, pre-embedding immunogold electron microscopy is applied to dissociated rat hippocampal cultures to provide sensitive, high-resolution snapshots of the distribution of surface AMPA receptors in spines, dendrites, and cell bodies that will be informative about trafficking of AMPA receptors. The density of the label for GluR2 varies, but is consistent throughout cell body and dendrites in each individual neuron, except at postsynaptic densities (PSDs), where it is typically higher. Glutamate receptor 2 (GluR2) labels at PSDs significantly increase after synaptic activation by glycine treatment and increase further upon depolarization by high K(+). Islands of densely packed labels have consistent size and density but vary in frequency under different experimental conditions. These patches of label, which occur on plasma membranes of cell bodies and dendrites but not near PSDs, are taken to be the aftermath of exocytosis of AMPA receptors. A subpopulation of clathrin-coated pits in cell bodies and dendrites label for GluR2, and the number and amount of label in individual pits increase after NMDA treatment. Coated pits near synapses typically lack GluR2 label under basal conditions, but ∼40% of peri-PSD pits label for GluR2 after NMDA treatment. Thus, exocytosis and endocytosis of AMPA receptors occur mainly at extrasynaptic locations on cell bodies and dendrites. Receptors are not preferentially exocytosed near PSDs, but may be removed via endocytosis at peri-PSD locations after activation of NMDA receptors.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملRedistribution of microtubules in dendrites of hippocampal CA1 neurons after tetanic stimulation during long-term potentiation.
It is now well accepted that the trafficking of AMPA receptors to the postsynaptic plasma membrane plays an essential role in long-term potentiation at the hippocampal Schaffer collateral synapses on CA1 pyramidal cells, but the motor mechanism of trafficking is unknown. We suspected that this trafficking of AMPA receptors during long-term potentiation may be carried out along microtubules by t...
متن کاملAbundant distribution of TARP γ-8 in synaptic and extrasynaptic surface of hippocampal neurons and its major role in AMPA receptor expression on spines and dendrites
Transmembrane AMPA receptor regulatory proteins (TARPs) play pivotal roles in AMP A receptor trafficking and gating. Here we examined cellular and subcellular distribution of TARP γ-8 in the mouse brain. Immunoblot and immunofluorescence revealed the highest concentration of γ-8 in the hippocampus. Immunogold electron microscopy demonstrated dense distribution of γ-8 on the synaptic and extrasy...
متن کاملSelective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking.
MCT2 is the main neuronal monocarboxylate transporter needed by neurons if they are to use lactate as an additional energy substrate. Previous evidence suggested that some MCT2 could be located in postsynaptic elements of glutamatergic synapses. Using post-embedding electron microscopic immunocytochemistry, it is demonstrated that MCT2 is present at postsynaptic density of asymmetric synapses, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 13 شماره
صفحات -
تاریخ انتشار 2011